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We consider the majority rule renormalization group transformation with two- 
by-two blocks for the Ising model on a two-dimensional square lattice. For 
three particular choices of the block spin configuration we prove that the model 
conditioned on the block spin configuration remains in the high-temperature 
phase even when the temperature is slightly below the critical temperature of the 
ordinary Ising model with no conditioning. We take as the definition of the 
infinite-volume limit an equation introduced in earlier work by the author. We 
use a computer to find an approximate solution of this equation and verify a 
condition which implies the existence of an exact solution. 

KEY WORDS: Lattice spin system; majority rule; rigorous high-temperature 
phase. 

1. I N T R O D U C T I O N  

Pos i t ion  space r enorma l i za t ion  g roup  t r ans fo rmat ions  are  a powerful  
technique for s tudying  the cri t ical  behav io r  of la t t ice spin systems with 
Is ing-l ike spins. ~11) A widely used example  of  such a t r ans fo rma t ion  is the 
ma jo r i ty  rule t ransformat ion .  In  this t r ans fo rma t ion  the b lock  spin is t aken  
to be + 1 or  - 1  accord ing  to whether  the ma jo r i t y  of spins in the b lock  
are  up  or  down,  A l though  these me thods  have been used extensively in the 
numer ica l  s tudy of  second-orde r  phase  t ransi t ions ,  there  are essential ly 
no r igorous  results a b o u t  these r enorma l i za t ion  g roup  maps  in a 
n e i g h b o r h o o d  of the cri t ical  point .  In  this p a p e r  we will make  a small  step 
t oward  improv ing  this s i tuat ion.  
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Given a measure on the configurations of the original spins, a blocking 
procedure like majority rule yields a measure on the configurations of 
block spins. If the measure on the original spins (r is a Gibbs measure for 
a Hamiltonian H(~r), then one would like to show that the measure on the 
block spins s is the Gibbs measure of some new Hamiltonian H(s). 
Formally this new Hamiltonian is given by 

exp[ / l ( s ) ]  = ~ T(s, a) exp[H((r)]  (1.1) 
6r 

In majority rule transformations, T(s, a) is 1 if the majority of the spins in 
each block agree with the block spin in that block. Otherwise it is 0. More 
generally, one can consider renormalization group transformations for 
other probability kernels T(s, a) which satisfy 

~, T(s, a ) =  1 (1.2) 
s 

This condition implies that Zo em~)= Zs e/~(~). 
It is important to emphasize that Eq. (1.1) is only formal. In a finite 

volume it makes sense, but then one must take an infinite-volume limit. 
The existence of this infinite-volume limit has been rigorously established 
only in the case of very high temperature or very large magnetic field. (5'7'8) 
Griffiths and Pearce (4-6) and Israel (v) argued that at low temperatures the 
definition of this renormalization group map has serious problems. Van 
Enter eta/. (13) used their ideas to prove that the renormalization group 
map is not defined at low temperatures for a variety of specific maps. More 
precisely, they show that the measure on the block spins is not the Gibbs 
measure of any Hamiltonian in a large Banach space of Hamiltonians. 
Their examples include the majority rule transformation with 7-by-7 blocks 
(and other larger block sizes). One can object that the measure for the 
block spins may be Gibbsian for a Hamiltonian in a larger Banach space 
of Hamiltonians than the space they considered, but this would not be a 
particularly satisfying resolution. Part of the renormalization group picture 
is that while the renormalization group map produces a Hamiltonian with 
an infinite number of different types of terms and so forces one to work in 
an infinite-dimensional space of parameters, these parameters should fall 
off rapidly as the number of sites in the term or the distances involved in 
the term increase. If the Hamiltonian for the block spins is outside the 
space of Hamiltonians considered in ref. 13, then this part of the renor- 
malization group picture would be in trouble. 

The rigorous results of ref. 13 are for low temperatures (low-tem- 
perature expansions are involved, so low here means well below the critical 
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temperature). Thus there are serious problems with using the majority rule 
renormalization group to study first-order phase transitions. These results 
do not say that the majority rule renormalization group map is not defined 
in a neighborhood of the second-order transition. We should also point out 
that at very low temperatures renormalization group maps that are quite 
different from Eq. (1.1) have been rigorously defined and studied.(3) 

A key tenet of the renormalization group philosophy is that the renor- 
malization group map is smooth in a neighborhood of the critical point, 
even though quantities like the free energy have singularities. (Ref. 13 
proved that if the renormalization group map is defined, then it is at least 
Lipschitz continuous. At the moment this result says nothing about the 
vicinity of the critical point, since the map has not been proven to be 
defined there.) To see why this smoothness is at least plausible, consider 
Eq. (1.1) and take the Hamiltonian H(a) to be the usual Ising Hamiltonian 
at the critical temperature. If the sum over a in Eq. (1.1) were over all a, 
then we would have a singularity on our hands. But the sum is not over 
all ~r, it is conditioned on the block spin configuration. The hope is that 
this conditioning on the block spins moves the model off the critical point, 
so that the conditioned partition function in the right side of Eq. (1.1) is 
not critical. In other words, fix a particular block spin configuration s and 
consider the probability measure on the original spins a associated with the 
partition function in Eq. (1.1). The expectation of a functional F(cr) of the 
spins a is given by 

(F(a) >s = Z -1 ~ r(a) T(s, a) exp[H(a)]  (1.3) 

(Z is determined by the requirement that this is a probability measure, and 
will depend on s.) One would like to show that even if the Hamiltonian 
H(a) is the Ising Hamiltonian at the critical point, for a fixed block spin 
configuration s, the measure ( .  >, is not critical. In particular, we expect it 
to have a finite correlation length even when the unconditioned system has 
an infinite correlation length. 

We prove that this is indeed the case for the two-dimensional Ising 
model for the three particular choices of the block spin configuration 
shown in Fig. 1. For the first block spin configuration (Fig. la), in which 
all the spins are + ,  this is no great surprise. Conditioning on this block 
spin configuration is like applying a magnetic field to the system, since the 
block spins favor a majority of the spins in each block being + rather than 
- .  For the other two block spin configurations (Fig. lb and lc), our result 
is less trivial. Indeed, for the checkerboard block configuration (Fig. lb), it 
is expected that ( .>s  will undergo a phase transition at low enough 
temperature. What our result shows is that the associated critical 
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Fig. 1. The three block spin configurations considered: (a) Ferromagnetic configuration, 
(b) checkerboard configuration, (c) strip configuration. The block spins are marked with a + 
or a - ,  while the original spins are indicated by a .. 

temperature is strictly lower than the critical temperature of the ordinary 
Ising model with no conditioning on a block spin configuration. 

To prove this result, we need a method for treating systems which are 
in the high-temperature phase, but whose temperature is not sufficiently 
high that techniques like high-temperature expansions or the Dobrushin 
uniqueness theorem can be applied. Such a method was developed by 
Dobrushin and Shlosman. (2~ They found a sequence of finite-volume condi- 
tions, any one of which implies that the model is in the high-temperature 
phase. For  a given volume the conditions may be checked on a computer. 
(Some examples of this are refs. 1 and 12.) Moreover, it is expected that for 
most discrete spin systems, if the temperature is above the critical 
temperature, then their finite-volume condition should be satisfied for 
sufficiently large volumes. Of course the amount of calculation required to 
show that a particular system satisfies one of the conditions may be 
prohibitive. We have not attempted to apply their method to the problem 
at hand. 

We use the method developed in ref. 9. In this method we forgo the 
usual definition of the infinite-volume limit and instead define the infinite- 
volume limit as the solution of a certain fixed-point equation. If the tem- 
perature is sufficiently high, one can prove that this fixed point equation 
definition of the infinite-volume limit agrees with the usual definition. (We 
give a sketch of the proof using high-temperature expansions in the 
next section. One can also prove this using the Dobrushin-Shlosman 
techniques. (1~ One very nice feature of this method is that the number of 
dimensions is effectively reduced by one. In the two-dimensional models we 
consider here this means that the fixed-point equation only involves the 
sites in what is effectively a one-dimensional set. 

While we can prove that our definition of the infinite-volume limit 
agrees with the usual one at very high temperatures, we cannot prove this 
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for all temperatures. Hence we will distinguish the two definitions by 
referring to the free energy and correlation functions that come out of our 
fixed-point equation as the fixed-point-equation free energy and correlation 
functions. For the region of fl in which we prove that our fixed-point equa- 
tion has a solution, we also show that the fixed-point equation free energy 
and correlation functions are analytic in ft. This of course implies that the 
two definitions agree in any connected subset of this region in which the 
usual free energy and correlation functions are analytic. In fact it implies a 
little more. Suppose that with the usual definition of the infinite-volume 
limit we have a phase transition at f l -  tic, meaning that the usual free 
energy is analytic in [0, tic) but not in a neighborhood of tic. Suppose also 
that we have shown that the fixed-point-equation quantities are analytic in 
an open region containing the interval [0. tic]. Then the phase transition 
cannot be a typical second-order transition in which derivatives of the free 
energy diverge as fl--, tic from the high-temperature side, since these 
derivatives must agree with the derivatives of the fixed-point equation free 
energy on the high-temperature side of tic, and the latter do not diverge. 
Thus if we can show that with the fixed-point equation definition of the 
infinite-volume-limit the various quantities are analytic from 0 to/~o, then 
with the usual definition of the infinite-volume limit if we assume that the 
first phase transition is a typical second-order transition, then it must occur 
at a/~ at least as large as/~o. 

Our theorem concerns the majority rule with two-by-two blocks. In 
this case the block may contain equal numbers of plus and minus spins, 
so we must explain what we do in the case of such ties. We take the 
probability kernel to be 

T(s, o-) = I- I t(s~, {0-i}i~) 
B 

where the product is over the two-by-two blocks B, sB is the block spin for 
that block, and {0-~}i~ are the four original spins in the block. The kernel 
t(.) for a single block is equal to 1 if three or more of the four original 
spins in the block agree with the block spin, equal to 0 if three or more 
disagree with the block spin, and equal to 1/2 if two of the original spins 
are plus and two are minus and the block spin is either plus or minus. This 
kernel is explicitly given by 

t(ss; 0-0, 0-i, 0-2, 0-3) 

= �89 +  s (0-0 + 0-1 + 0-2 + 

- -  I~SB(0-10-20-3 + 0"00-20"3 + 0-00-10-3 + 0-00-10-2) 

where 0-0, 0-1, 0-2, 0-3 are the original spins in the block B. 
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Theorem.  Let H(a) be the Hamiltonian of the usual Ising model on 
the two-dimensional square lattice. Let tic be the critical inverse tem- 
perature of this model [tic = �89 log(1 + x/2) = 0.4407...]. There is a flo > tic 
such that if s is one of the three block spin configurations shown in Fig. 1, 
then the fixed-point-equation free energy and correlation functions for the 
model defined by Eq. (1.3), i.e., conditioned on this block spin configura- 
tion, are analytic in a neighborhood of [0, rio] and agree with the usual 
free energy and correlation functions in a neighborhood of f l=0.  
Moreover, the fixed-point equation truncated correlation functions have 
exponential decay with a correlation length that is bounded as fl ranges 
from 0 to rio- 

Remarks. 1. Our proof of the theorem is computer assisted in the 
following sense. First we prove that if a certain condition that only involves 
a finite set of sites is satisfied, then the conclusions of the theorem hold. 
Then we use the computer to check if this condition is satisfied. However, 
we do not use interval arithmetic in these calculations. This is a bit of a 
cheat, but we should stress that the numerical calculations are not ill 
behaved and while we do not have rigorous bounds on the numerical 
errors, we have checked that these errors are insignificant. 

2. For some choices of the block spin configuration s the conditioned 
system may have a phase transition with a diverging correlation length at 
some tic(s). What the theorem says is that for the three block spin 
configurations is Fig. 1, tic(S)> tic. 

3. The computer calculations are carried out at tic, the critical 
temperature of the unconditioned model. The finite-volume condition is 
such that if it holds at a particular temperature, then it holds in a 
neighborhood of that temperature. Hence, verifying that the condition 
holds at tic implies that it holds for fl slightly greater than tic, although we 
do not get an explicit bound on rio. We could obtain an explicit bound on 
fie by carrying out the calculations at fl's slightly larger than tic. The result- 
ing bound would be quite close to tic. The finite-volume condition is just 
barely satisfied at tic. Of course, if one can actually prove that a system is 
in the high-temperature phase at a particular temperature, then the actual 
critical temperature is probably a good bit lower. In other words, we 
expect the critical temperatures for the conditioned systems to be 
significantly lower than the critical temperature of the unconditioned 
system. 

It would be interesting to estimate numerically the critical temperature 
of the conditioned measure for some simple block spin configurations like 
those shown in Fig. 1. For example, one could use Pad6 approximants to 
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study the high-temperature series of these models. Since we can actually 
prove that the critical temperature is lower than the critical temperature of 
the unconditioned model, we expect that it is lower by a fair amount. 

Obviously, what we have done in this paper is a very small step 
toward the goal of putting transformations like the majority rule on a 
rigorous footing in a neighborhood of the critical point. The next step from 
our point of view is to prove that the theorem we have proved here for 
three particular block spin configurations is true for all block spin 
configurations with a/~o >/~c which may be taken to be independent of the 
block spin configuration. It should be noted that in this approach we are 
trying to prove more than is absolutely necessary for the majority rule map 
to be defined. If there is a set of block spin configurations for which the 
theorem is not true, but this set has measure zero, then the definition of the 
majority rule map could still be acceptable. Showing that the theorem is 
true for all block spin configurations does not complete the first step of the 
renormalization group transformation. We must still show the existence of 
the Hamiltonian /~(~r), and hopefully some nice decay properties for this 
Hamiltonian. 

All of the above is only concerned with the first step of the renor- 
malization group. The ultimate goal is to show that there is an open set of 
Hamiltonians on which the map is rigorously defined which contains a 
fixed point of the map. Passing through this fixed point should be a stable 
manifold that contains the usual Ising Hamiltonian at the critical point. 
(At this point in the discussion there are two fixed-point equations. The 
first is merely used to define the infinite-volume limit. Finding a solution 
for this fixed-point equation amounts to a single iteration of the 
renormalization group map. The second fixed-point equation is for the 
renormalization group map itself. This is the fixed point that the 
Hamiltonian of a critical model should converge to in the limit of 
an infinite number of iterations of the renormalization group map. 
Throughout this paper we are only concerned with the first iteration of the 
renormalization group map, and so the fixed-point equation we discuss will 
always refer to the first fixed-point equation.) 

In Section 2 we derive the fixed-point equation that we use to define 
the infinite-volume limit. This derivation is heuristic, but we sketch how 
one may use high-temperature expansions to prove that for sufficiently high 
temperatures this definition of the infinite-volume limit agrees with the 
usual one. The derivation closely parallels the derivation in ref. 9 of a 
similar fixed-point equation for the ordinary Ising model with no majority 
rule transformation. In ref. 9 we proved that a certain condition involving 
an approximate solution of the equation implies the existence of an exact 
solution. An analogous result holds for our fixed-point equation. We state 
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the result and refer the reader to ref. 9 for its proof. The techniques of ref. 9 
also show that this condition implies analyticity of various quantities, e.g., 
the free energy and correlation functions, in parameters such as the 
temperature. In Section 3 we turn to the question of finding approximate 
solutions to the fixed-point equation that satisfy the condition. Checking 
that the condition holds requires a fair amount of computer calculation, so 
it is important to develop algorithms that are reasonably efficient. We 
briefly discuss some of the tricks that we have found to be useful. We then 
present the results of the numerical calculations that show that for the 
three block spin configurations of Fig. 1, we can find approximated fixed 
points that satisfy the condition. 

2. A F IXED-POINT EQUATION FOR THE 
I N F I N I T E - V O L U M E  L IMIT  

Throughout this section we make use of the following fact. If f ( a )  is 
a function of the spins cri, where i ranges over some finite set V, then f(tr) 
may be written in a unique way as 

f(G) = ~ c(X) tr(X) 
x 

where a (X)=  1-Ii~x ai and X is summed over all subsets of V. The numbers 
c(X) are given by 

c(x) : 2-~v~ y~ ~(x) f (~) 
ry 

where IV1 is the number of sites in V, and the sum is over all spin 
configurations on V. 

Consider the volume A shown in Fig. 2. The partition function for this 
volume is 

ZA = ~ I-I t(sB, {ai}i~a) el4a 

We include in the Hamiltonian HA the terms that couple spins inside A to 
spins outside of A. Thus the partition function ZA will be a function of t h e  
spins in the boundary 0A, as well as the block spins s8 with B c A. (A site 
is in OA if it is not in A, but it has a nearest neighbor that is.) We will first 
consider the block spin configuration in which all sB= +1, and suppress 
the dependence of ZA on sB. Since ZA is always positive, we can write it 
in the form 

ZA=exp [~  cA(X) ff(X)] (2.1) 
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Fig. 2. The volume A and some of the sites in ~A. The volume A' is obtained by including 
the four sites (0, 0), (0, 1), (1, 0), and (1, 1). 

where X is summed over subsets of OA. Now consider the volume A' which 
is obtained from A by adding the two-by-two block Bo=  {(0, 0), (0, 1), 
(1, 0), (1, 1)}. 

Again, we can write 

ZA'=exp [~x CA,(X) ~(X) 1 (2.2) 

where now X is summed over subsets of 0A'. We can obtain ZA, from ZA 
by summing over the sites in the added block, 

ZA,= 2 t(s~o, {{~i}i~o) exp(HsolZA (2.3) 
{ ~i } i~B 0 

The sum over {~i}i~no is over the spin configurations on the block Bo. He0 
contains those terms in the Hamiltonian for A' that did not appear in the 
Hamiltonian for A, i.e., terms which couple a site in Bo to a site in 0A'. 
Using (2.1) and (2.2), we find that (2.3) becomes 

eXP [ xZA, C A'( X) Cr( X) ] 

= ~ t(SBo'{~r:},~o) exp[HBo + Z cA(X) a(X)] 
{~r~}i~ B0 J~= OA 
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If X ~  Bo = ~ ,  then the term exp[CA(X ) o-(X)] can be factored past the 
sum o v e r  {ffi}ieBo. Thus 

exP [x~A cA'(X) ~r(X)] 

~r(X)] exp fA(X) o'(X)] = eXP [ x=OA,X ~8o= ~ C A( X) [ X ~A' (2.4) 

where fA(X) is defined by 

eXP [x~A, fA(X) ~(X) ] 

= ~ t(sso, {~i}i~Bo) exp[HBo + ~ cA(X)~(X)] (2"5) 
{Gi}iEBo X =  OA, Xr B 0 7 A 

Then (2.4) implies for sets X such that X c  0A' and X c  0A. 

cA'(X) = cA(X) + fA(X) (2.6) 

For sets X such that Xc OA' but X r ~?A, it implies 

CA,(X) = fA(X) (2.7) 

All the preceding equations are rigorous since they only involve a 
finite number of sites. We will consider the following infinite-volume limit 
of A. In Fig. 2 we let L --* 0% so the right side of 0A including the kink is 
kept fixed, while the top, bottom, and left sides move off to oe. The 
fixed-point equation that we will derive will only involve CA(X) for X 
contained in the L ~ oe limit of the right side of 0A. We denote this set of 
sites by 0A~o. Explicitly, 

0A~ = {(0, n ) : n = 0 ,  1, 2,...} ~ {(1,0)} ~ {(2, - n ) : n =  1, 2, 3,...} 

We denote by OA" the analogous set of sites obtained using 0A' in place 
of OA. The set 0A"  is the same as c3A~ except that it does not include the 
sites (0, 1), (0,0), and (1,0), while it does include the sites (1, 2), (2, 1), 
and (2, 0). 

If /~ is sufficiently small, then there is a rigorous high-temperature 
expansion for In ZA. It yields convergent expansions for the coefficients 
cA(X). From these expansions one obtains the following bound on cA(J(). 
Let G denote a set of bonds. We define c3G to be the set of sites which 
belong to an odd number of bonds in G. If we did not include the renor- 
malization group kernel T(s, a), i.e., we just considered the ordinary Ising 
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model, then the expansion for C A ( X  ) would be over graphs G such that 
8G = X. With the kernel T(s, ~) included, 8G may include sites inside A. So 
the graphs that contribute to cA(X) will have X =  8G. We define 

n(X) = min{ IG]: X c  8G, G is connected} 

where IG[ is the number of bonds in G. Then, for X c  8A~, we have 

tcA(X)I ~<e m~(X) (2.8) 

where m is a positive constant we can make as large as we want by taking 
fl sufficiently small. (m does not depend on A.) 

Let L1 and L2 be two different values of L and consider the difference 
Ca(rl)- CA(L2). (We have made the dependence of A on L explicit here.) The 
graphs which contribute to this difference come from connected graphs G 
with X c S G  and such that G extends from X all the way to the top, 
bottom, or left boundaries of A(L1) or A(L2). Thus the high-temperature 
expansion implies 

]CA(L1 ) --  CA(L2) ] ~ e--m(L d(x)) 

where L = min{L1, L2}, d(X) is the distance from the origin to the site in 
X closest to the origin, and m can be made as large as desired by requiring 
fl to be sufficiently small. This estimate implies that limL ~ ~ CA(L)(X) exists. 
We denote this limit by c(X). Note that (2.8) implies the same bound on 
c(X). 

Similarly, l imc~ ~ CA,(r)(X ) exists. However, this limit is not equal to 
e(X), since the location of the kink in A' is shifted with respect to its 
location in A. Taking this shift into account, we see that 

lim CA,(L)(X) = c(X-- (0, 2)) (2.9) 
L ~ o o  

where X -  (0, 2) is the set of sites obtained by subtracting (0, 2) from each 
site in X. 

The fixed-point equation we will define will only involve c(X) with 
X~OA~ and Xc~Bor ~ .  We will denote {c(X): XcSAoo, Xc~Bor  
by just c. We will introduce a norm on the set of such c. For each site i, 
let #; be a nonnegative number such that/~i =/~j if i and j occupy the same 
position within their respective blocks, i.e., i=j+(2n, 2m) for some 
integers n, m. (Of course this means there are only four different/~i.) Define 

tlctl = ~ Ic(X)t e ~'(x) (2.10) 
X 
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w h e r e / t ( X )  = Zi~x/~i .  Keeping  in mind the restriction that  the/~i ~> 0, it is 
easy to show (9) that  we have a Banach  algebra,  i.e., [[elC2lL ~< Ilcll[' [[c2[j. 
When  fl is small, the n o r m  with all the # i = 0  will suffice. To  prove  our  
theorem we will need to use nonzero  values of #~. 

We mus t  also consider the infinite-volume limit of fA(X). The bounds  
we have imply that  we can make  

r  x=~A,X~Bo~ rZ CA(X) 

as small as we like by taking fl sufficiently small. Thus,  for small fl we can 
write fa(X) as a convergent  power  series in the CA(X) as follows. Define 

d= Hao+ ~ CA(X) a(X) (2.11) 
X c O A , X c ~  B o #  ;~ 

Then Ildll ~ 0 as fl ~ O. N o w  

eXP lx~A, fA(X) ~r(X)]= 

where 

2 t(SBo , {~ri}i~Bo)ea= 8(1 + g )  

g =  ~ E t ( S B o '  { f f i } i ~ B o  ) d n  

n = 1 {r 0 

(2.12) 

and we have used the fact that  

E t(S o, = 8 

Since we are in a Banach  algebra,  it follows that  II gl[ ~ 0 as IIdll ~ o. So 
Ilgll -- ,0 as f l ~ O .  If ligll < 1, we can expand ln(1 + g )  in a power  series to 
obta in  

fAX) a(X)=lnS+ ~ (-1)"+Ig" 
X ~ ( 3 A '  n = 1 t l  

The above equat ion  is for the infinite-volume case. We can use it to 
define f(X) in the infinite-volume limit. Let 

do =- H no + ~ c( X) a( X) 
X ~ (OAoo , X c~ Bo :# ~ 



Majority Rule RG Transformations 27 

and let g~ be given by (2.12) with d replaced by d , .  Then we define f(X) 
by 

f(X) a(X) = In 8 + g~ 
P1 X ~  OA'~ n = 1 

Our bounds also imply that 

BO# ~i X ~  OA~, Xc~ BOr C~ 

as L ~ ~ .  So 

lim ~, fA(X) or(X)= ~ f(X) a(X) 
L ~ o o  X ~ A "  X ~ A ~  

We now let L--. oe in (2.6) and (2.7) and use (2.9) to obtain for 
X~  OA~ 

c(X)=c(X+(O, 2))+fA(X+(O, 2)), X+ (0, 2) c a A ~  

c(X) = f ( X +  (0, 2)), X+  (0, 2) r ~?A~ 

The above equations involve c(X) for sets X with Xc~ Bo = ~ as welt as 
sets with Xc~ BQ # ~ .  Only sets X satisfying the second condition appear 
in the definition of f(X). This suggests that we try to eliminate all the c(X) 
with X n  Bo = ~ .  This can be done, 19~ and the end result is the following 
equation for X with X n  Bo r ~ :  

c(X) = ~ f(X+ (2n, 2m)) (2.13) 
n,m:X 

The condition n, m: X means that n, m are summed over all integers such 
that X+  (2n, 2m) ~ ~?A~. Recall that f(X) depends on c = {c(X): X~  ~A~, 
Xc~ BoP ~} .  We will denote the right side of (2.13) by F(X, c) and denote 
the collection {F(X, c): X c  0Aoo, Xc~ B 0 # ~ }  by just F(c), so that (2.13) 
may be written succinctly as F(c)=c. We should note that F(c) also 
depends on fl, since the definition of f(X) involves H~0. 

Thus far we have only been considering the block spin configuration 
in which sB= +1 for all the blocks. We now consider the other two block 
spin configurations in Fig. 1. Equation (2.9) was true because when we shift 
the block spin configurationwith all sB= +1, it is unchanged. For the 
configurations in Figs. lb and lc, shifting the configuration by one block 
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changes it, but the change is just given by a global spin flip. Thus the 
analog of (2.9) in these cases is 

lim CA'(L)(X) = --c(X-- (0, 2)) (2.14) 
L ~ c ~  

When one follows through the elimination of the c(X) for X which do not 
intersect Bo, one finds that the analog of (2.13) for the block spin con- 
figurations of Figs. lb and lc is 

c(X) = ~ sgn(n, m) f (X+ (2n, 2m)) (2.15) 
n,m:X 

where sgn(n, m) is + 1 or - 1 as follows. Recall that Bo is the block contain- 
ing (0, 0). Let B(n,m ) be the block containing (2n, 2m). The sgn(n, m ) =  +1 
if Sso = sBl,,,, I, and sgn(n, m) = - 1  if s~0 ~ SBI,,ml- 

In order to use F(c)= c as the definition of the infinite-volume limit 
even when fl is not small, we need to define F(c) in the case that [Ic[I and 
[IHI[ are not small. Note that in this case the power series approach we used 
to define f (X) will not work. The needed definition has been carried out in 
ref. 9. The idea is the following. Suppose c = ~ x  c(X) a(X), where the sum 
only involves a finite number of X. Then (2.5) may be used as the definition 
of f(X), since only a finite number of sites will appear in this equation. 
We then define F(c+c') for c' with small lit'l] by doing an expansion 
around F(c). 

For small fl the convergent high-temperature expansions show there is 
a solution of the fixed-point equation (2.13). We will show there is a solu- 
tion for other values of fi by finding an approximate solution and showing 
that F(e) is a contraction in a large enough neighborhood of this 
approximate solution. Let DF(c) denote the Jacobian of the map F(c). Let 
][DF(c)[[ denote the norm of this linear operator with respect to the norm 
(2.10) for the Banach space. For A c Bo, define 

1 

• exp [HB0+ ~ CA(X) O'(X)] 
X c O A , X n B o v ~  

where Z is chosen so that (1 )o  = 1. [This "expectation" ( . ) o  has nothing 
to do with the expectation ( . ) ~  defined by (1.3).] 

Then (~(A))0 is a function of ~; with i~OA'.  For the set of c for 
which F(c) is defined, we have the expansion ~9~ 

~cr(A) )o = ~  d(A, X) ~(X) (2.16) 
X 
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where the sum is over subsets Jr of ~ A ' .  The techniques of ref. 9 show that 

]lDf(c)ll ~ max e-~(A) Y, Id(A, X)[ e ~'(x) 
A : A  ~ B o ' A  =/- ~ X 

If c only involves a finite number of sites, then there are only a finite 
number of nonzero d(A, X), and so the above bound may be explicitly 
computed. For small perturbations of such finitely supported c we may use 
the following bound(9): 

NDF(c + c')H ~ IIDF(c)H + ~([Ic'l[) 

where e(x)=2(e ~ -  1) / (2-e~) .  By a standard fixed-point theorem, if we 
can find an approximate solution Co such that 

min 1IF(co) - Cot[ < 1 (2.17) 
r[1 - I IOF(co ) l l -~ ( r ) ]  

then the fixed-point equation F(c)-= c has an exact solution. (The min is 
only over r such that the denominator is positive.) 

The above condition for the existence of an exact solution may be 
improved slightly. Define c. inductively by c. = F(c. ~). We have 

Ilr(c,)-c,H ~ IlF(cn_ l ) -  c,_ lll sup [[DF(c)IJ 

where the supremum is over c along the line segment between cn_ ~ and 
F(cn 1). Using the above bound on ItDF(c)II, this becomes 

IrF(c,)-cnll <~ IlE(c, 1 ) - c n - l l l  [llDf(cn 1)11 + ~(llf(cn-1)-c,=llt)-] 

(2.18) 

We also have the bound 

HOF(c~)ll ~ [IDF(c._I)N +e([IF(c._~)-c. ,lt)] (2.19) 

Given bounds on ][DF(co)l[ and HF(co)-CoI[, we can iterate the above 
inequalities. If the bounds on llDf(c~)ll converge to a number less than 
one, then the bounds on IIf(c.)-c.tl converges to zero geometrically and 
we can prove that there is an exact fixed point. 

Next we show how one extracts quantities like the free energy and 
correlation functions from the fixed-point equation. In the infinite-volume 
limit the free energy comes from the term in (2.1) that has no a 
dependence, i.e., the CA(~) term. Thus from (2,4) we see that the infinite- 
volume limit of the free energy per site is given by ~ f ( ~ ) .  (The factor of 
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1/4 enters because there are four sites in the block Bo.) Thus, to compute 
the free energy, one must first find the solution c of the fixed-point equation 
and then compute f ( ~ )  using this c. 

Next we consider the analyticity of the free energy in/3. The function 
f(ffS) depends explicitly on /3 since H~0 depends on ft. It also depends 
implicitly on/~ since the solution c of the fixed-point equation depends on 
/3. Thus the derivative of the free energy with respect to/~ is given by 1/4 
times 

df(;a) af( ) c,(X ) 
dE O~ x=o~,X~eoe;a Oc(X) 

where c' denotes the derivative of the fixed-point equation solution with 
respect to ft. Using the fixed-point equation F(c) = c, we find that it is given 
by 

c ' = ( 1 - D F )  1__OF 

Substituting this in the previous equation and streamlining the notation, 
we obtain 

dE r ~-~ + DF(1-DF)  1 ( ~ )  (2.20) 

To obtain the correlation function @r(A))s we add the term 
~]i a(A + i) to the Hamiltonian and compute the derivative of the free 

energy per site with respect to c~ at ct = 0. (The sum over i is over all lattice 
sites i, and A + i denotes the translate of the set A by i.) The computation 
is completely analogous to the above computation. Since IIDFII < 1, we 
may rewrite the result as 

(DF) ~ ~ (;ZJ) 
n ~ O  

(2.21) 

To show that truncated correlation functions decay exponentially we need 
to develop a geometric description of the above equation. Recall that 
F(X, c) was defined to be the right side of (2.13). Using the notation of 
(2.16), this yields 

~F 
d(A, X) t(X)) 

X 



Majority Rule RG Transformat ions 31 

where t(X) is the unique multiple of (2, 2) such that X+ t(X) intersects Bo 
and is a subset of dA~. This shift of o(X) to a ( X +  t(X)) will appear 
frequently in the following, so we will simply refer to it as the shift. The 
above equation says that to compute c~F/O~ we first compute (a (A))o ,  
write it in the form (2.16), and then apply the shift. 

The action of DF may also be described using the shift. To compute 
the result of applying the linear transformation DF to o(X) we compute 
(a (X))o  and then apply the shift. Thus, Eq. (2.21) says that the correlation 
function (a(A))s is computed as follows. Compute (~(A))o and write the 
result as in (2.16). The o-independent term d(A, ~ )  contributes to the 
correlation function. For all the other terms d(A, X) a(X) we apply the shift 
and then compute the ( . ) o  of the shifted term. We write the result as 

y a(Y) a(Y). The Y = ~ term contributes to the correlation function. For 
all the other terms we repeat the procedure, i.e., we apply the shift and then 
take the ( . ) o  expectation. The a-independent term in the result goes into 
the correlation function. We should point out that since the expectation 
( ' ) o  only involves the spins in Bo, for any X we have ( a ( X ) ) 0 =  
(a(Xn Bo))0 a(X\Bo). 

To show that truncated correlation functions decay exponentially, we 
replace the observable a(A) by o(A)o(B) with A and B widely separated. 
We first give the argument for the special case that for each X c Bo there are 
only finitely many nonzero terms in the expansion of (o(X))o. In this case 
when we compute (~r(A) a(B))o with A and B widely separated, the terms 
in the result must be of the form a(A') a(B'), where the distance between 
A' and B' is at least as large as the distance between A and B minus some 
fixed distance. The shift does not change the relative distance between A' 
and B'. It is possible, however, that one but not both of A' or B' will be 
the empty set. When this happens the ensuing terms contribute to the 
correlation funuction (a(A))s (a(B))s. As we repeatedly apply DF, each 
application can move the two widely separated sets closer or it can wipe 
out one of the sets completely. The terms from the latter case contribute to 
(o(A))s (a(B))s, and so are not part of the truncated correlation function 
(o(A);a(B))~. As the sets move closer together they can eventually 
intersect. The number of applications of DF needed to achieve this is 
proportional to the distance between A and B. Since IIDFII < 1, this implies 
that the sum of such terms is exponentially small in the distance between 
A and B. 

Unfortunately, in general there will be infinitely many nonzero terms 
in the expansion of (a (X))o  for XcBo. Thus it is possible that a single 
application of DF can make the two widely separated sets intersect. The 
terms in (2.16) that can cause this to occur come from sets X which contain 
at least one site that is very far from the block B o. The coefficient of such 

822/72/1-2-3 
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a term should be very small. To quantify this argument we must modify the 
definition of the norm slightly. The new norm is 

I lell = S I c (x )  I e "{x l  + ~d~x~ 
X 

where d(X) is the maximum distance between two sites in X or between a 
site in the block B0 and a site in X. ~ is a small positive number. If we have 
a finitely supported approximate fixed point for which the condition for the 
existence of an exact fixed point is satisfied when we use the original norm, 
then the condition is also satisfied when we use the new norm if e is suf- 
ficiently small. In this new norm a term in the expansion of {a(X))o which 
can move the sets A and B closer by a distance l is weighted by a factor 
at least as large as e~( This leads to the exponential decay of the truncated 
correlation functions. 

3. THE C O M P U T E R  CALCULATIONS 

In the previous section we derived a sufficient condition for the exist- 
ence of a solution of the fixed-point equation (2.13) which we use to define 
the infinite-volume limit. The next step is to find an approximate solution 
of the fixed-point equation that satisfies this condition. Since the 
approximate solution will only depend on a finite number of spins, check- 
ing whether or not it satisfies the condition is a computat ion that only 
involves a finite number of spins, and so may be done on a computer. Even 
if the approximate solution only involves a modest number of spins, e.g., 
15, the computations required are nontrivial and must be done in a 
reasonably efficient manner. We can greatly reduce the amount  of com- 
putation required with the following observation. Since the condition for 
the existence of a solution of the fixed-point equation is that some quantity 
be strictly less than 1, we never need to compute anything exactly. 
Sufficiently accurate bounds on quantities will do. 

Consider storing a function f(o-) of the spins ai for i e  V. We could 
store the value of the function for each spin configuration ~. If ]VI is the 
number of sites in V, there will be 2 ivl values to be stored. We could also 
write the function in the form 

f(a) = ~ c(X) a(X) (3.1) 
X 

where X is summed over all subsets of V and store the 2 Ivt coefficients c(X). 
For  the functions that we typically encounter, many of these coefficients are 
very small, so we can restrict the sum over X to a small subcollection of 
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the collection of subsets of V and still approximate f(o-) quite well. Thus 
what we actually store is the following: a collection X~,..., Xn of subsets of 
V, coefficients ci for i = 1 ..... n, and an "error" e which is a positive number 
such that 

f(a)- ~ cia(X,) <~e (3.2) 
i = 1  

The main operations we must carry out on these functions are addition, 
multiplication, exponentiation, and logarithms. 

Addition is easy. If 

f(a)-- ~ cia(Xi) <~ e 
i ~ l  

g(,T) - aj, (Yj) 6 

then 

i = 1  j ~ l  

(3.3) 

~<e+6 

Of course some of the Xi may equal some of the Yj, in which case we 
consolidate the two terms into a single term in the list for f (a)  + g(a). 

Next we consider multiplication of two functions f (a)  and g(a). 
Suppose that the inequalities in (3.3) holds. Then we have 

f(a)g(a)- ~ pka(Zk) <~C~+D6+e6 (3.4) 
k = l  

C: ~ Ici]e ~(xi) 
i = 1  

where 

and D is defined similarly. [Recall that # (X)=Zi~x /~ i . J  The list Zk 
includes all the sets of the form X, A Yj, and the coefficients Pk are given 
by 

pk  = c ,d j  (3.5) 
i , j :Xi  ~ Y j~  Z k 

[-Recall that X A Y is the set of sites in X or Y but not both. So 
a(X) a(Y) = ~r(X A Y). ] Typically, n and m will be large, but many of the 
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coefficients will be quite small. This suggests that we only compute a subset 
of the terms in the above formula for Pk. There are various criteria one 
could adopt for deciding which terms to keep. We use the following. Let 
y > 0. Define 

I =  {(i,j): 1 <~i<~n, l<~j<~m, ]c~djl ~>y) 

U= {(i,j): l <~i<~n, l <~j<~m, Ic;djl <~) 

Then we let 

Pk = ~ cldj (3.6) 
( i , j ) ~ l : X  i A Y j = Z  k 

We then must add the following quantity to the error term for f(cr) g(a): 

y" [cidjle "~x~)+~rj) (3.7) 
( i , j ) E l  c 

The most time-consuming operations are exponentiation and taking 
the logarithm. To compute the former we make use of the following 
identity: 

e x p [  ~ ci~(Xi)]= (I c~ 1~I [1 +cr(Xi) tanh(ci)] (3.8) 
i = 1  i = 1  i = 1  

This reduces the computation to a sequence of multiplications. We do these 
using the method discussed in the previous paragraph. Each multiplication 
has some error, and these errors propagate through the calculation, but we 
always have rigorous bounds on them. 

To compute logarithms, the following algorithm works well, although 
at first glance it looks like a disaster. By multiplying our function by an 
overall constant, it is enough to consider computing 

l~ +x~ c(X)a(X) ] 

where the sum over X is over some finite collection of sets of sites. Pick Y 
such that Ic(Y)L = s u p x , ~  le(X)[. We then use 

where 

2 ~ ( X ) ~ r ( X ) = [ l +  2 c(X)~r(X)] [1-c(A)~r(A)] (3.10) 
X x ~  
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The second log in the right side of (3.9) is trivial to compute, since o-(A) 
can only be + 1 or - 1 .  In computing the product in the right side of 
(3.10), there will be some cancellation; the term c(A)G(A) and its opposite 
appear. This product will also generate a lot of other terms. However, we 
have found in practice that the norm of Zx g(X) a(X) is smaller than that 
of l+Zxe~c(X)a(X). We iterate the above process until the norm 
of Y~xe~ c(X) cr(X) is small. If it is small enough, then 
log[l+~xe~c(X)a(X)] has a convergent power series. So we can 
approximate it by ~xe~ c(X)~r(X) and find a rigorous bound on the 
error. The function we start with will usually contain some error term, and 
the use of our multiplication algorithm to compute the right side of 
Eq. (3.10) will produce some error. We must compute bounds on these 
errors as we iterate the above procedure. At the end of the iteration, in 
order for log[1 + Zx~ ~ c(X) a(X)]  to have a convergent power series, the 
sum of the norm of ~ x ~  c(X) a(X) and the error for this function must 
be small. 

Now we turn to the numerical results. We must do two things. First 
we must compute an approximate solution Co to the fixed-point equation. 
Then we must compute bounds on JlF(c0)-Coil and IlDF(co)ll. To find an 
approximate solution to F(c)=c, we truncate it so it becomes a finite- 
dimensional equation. We do this as follows. Let V be a finite subset of the 
right boundary of 3A, and let c = Z x =  v c(X)~(X) be a function of the 
spins in V. Because of the shifting involved, F(c) will not be function of just 
the spins in V. We will have 

g(e) = F(X, c) 
X 

where some of the sets X are not subsets of V. We truncate this by defining 

Fv(c)= ~ F(X, c) a(X) 
X c V  

In other words, we simply drop the terms which are not supported on V 
after the shifting. 

The fixed-point equation Fv(c) = c is finite dimensional. We solve it by 
iteration and take Co to be its solution. [Actually, we make one further 
truncation. In Fv(c) we keep only the terms with four or less sites.] We 
then compute bounds on J[F(co)-c0[[ and I[DF(co)[I using the algorithms 
discussed above. The #i are chosen to chosen to minimize the left side of 
(2.17). For  each of the three b lockspins  configurations of Fig. 1, we use 
different choices for the set V. In all three cases V contains the sites (0, 0), 
(0, 1), (1,0), (1,1), (0, 2), (0,3), (0,4), (0, 5), ( 2 , - 1 ) ,  ( 2 , - 2 ) ,  ( 2 , - 3 ) ,  
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Tablel. Resultsforthe Block Spin Configuration of Fig .  1 a 

IIE(co)-coll~ IID~co)[[~ liDE(c)ll~ ~r ~r ~r ~r 

a 0.005221 0.840130 0.9358 0.2 0.56 0.45 0.0 
b 0.003147 0.885046 0.9813 0.0 0.24 0.2 0.0 
c 0.003242 0.883687 0.9836 0.2 0.39 0.38 0.0 

For each of the three block spin configurations shown in Figs. l a - l c  we find an approximate 
fixed point Co and compute upper bounds on liE(co)- c0[I ~ and IIDF(c0)ll~. These bounds are 
used in inequalities (2.18) and (2.19) to obtain a bound on IkDE(c)ll~,, where c is the exact 
solution of the fixed-point equation. 

( 2 , - 4 ) ,  and ( 2 , - 5 ) .  In addition, for the block spin configuration in 
Fig. lb, V contains the sites (0, 6) and (2, - 6 ) ,  and for the configuration 
in Fig. Ic it contains (2, - 6 ) .  The bounds we find are shown in Table I. We 
iterate (2.18) and (2.19) and show the resulting bound on ILDF(c)I] at the 
exact fixed point in the third column. Remember that this quantity must be 
less than one to conclude there is an exact fixed point. We should caution 
the reader that since we have used different V's and different values for the 
#i for the three block spin configuration, comparisons between the rows of 
the table are rather meaningless. These calculations are carried out at tic, 
the critical temperature of the unconditioned model. Our approximate fixed 
point only involves a finite number of sites, so liE(c0)- Coil and IIDF(co)H 
are continuous in /3. Thus if the condition holds at/3c, then it holds in a 
neighborhood of/3c. 
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